

2024 Joint Annual Meetings of MAA-Florida

Surjections between Euclidean spaces, changing variable formula and Brouwer fixed point theorem

Shibo Liu

Florida Institute of Technology http://lausb.github.io sliu@fit.edu

https://www.fit.edu/mathematics-and-systems-engineering

Contents

3	Changing variable for multiple integrals 3.1 Surface integral and Divergence Theorem	12
4	Brouwer fixed point theorem (BFPT)	18
5	Coarea formula and applications	20

Differentiation for vector functions

2 Suejectivity of $f: \mathbb{R}^m \to \mathbb{R}^n$ and FTA

3

1. Differentiation for vector functions

The Euclidean norm of a vector $x \in \mathbb{R}^m$ is

$$|x| = \sqrt{(x^1)^2 + \dots + (x^m)^2}.$$

Let $U \subset \mathbb{R}^m$, $f: U \to \mathbb{R}^n$, $\alpha \in U^\circ$. If there is $n \times m$ matrix A s.t.

$$f(\alpha + h) - f(\alpha) - Ah = o(|h|), \quad as |h| \to 0,$$
 (1)

we call A the derivative of f at a, write A = f'(a) or A = Df(a).

Let $f = (f^1, ..., f^n)$, denote the i^{th} -row of A by A^i , the i component of (1) is

$$f^{i}(\alpha+h)-f^{i}(\alpha)-A^{i}h=o(|h|).$$

Thus f^i is differentiable at a, and

$$A^i = \nabla f^i(\alpha) = (\partial_1 f^i, \ldots, \partial_m f^i).$$

Therefore

$$A = \left(\begin{array}{ccc} \partial_1 f^1 & \cdots & \partial_m f^1 \\ \vdots & & \vdots \\ \partial_1 f^n & \cdots & \partial_m f^n \end{array}\right),$$

the Jacobian matrix of f at α .

When m = n, the Jacobian determinant of A is

$$J_f(a) = \frac{\partial (f^1, \dots, f^m)}{\partial (x^1, \dots, x^m)} = \det \begin{pmatrix} \partial_1 f^1 \cdots \partial_m f^1 \\ \vdots & \vdots \\ \partial_1 f^n \cdots \partial_m f^n \end{pmatrix}.$$
 (2)

Let $U \subset \mathbb{R}^m$, $V \subset \mathbb{R}^n$. $f: U \to \mathbb{R}^n$, $g: V \to \mathbb{R}^\ell$. If $f(U) \subset V$, we have $a \circ f: U \to \mathbb{R}^{\ell}$.

Thm 1 (Chain role). If f is differentiable at $a \in U$, g is differentiable at b = 0 $f(\alpha)$, then $g \circ f$ is differentiable at α and $(g \circ f)'(\alpha) = g'(b)f'(\alpha)$.

If y = g(u), u = f(x), then

$$\begin{pmatrix}
\frac{\partial y^{1}}{\partial x^{1}} \cdots \frac{\partial y^{1}}{\partial x^{m}} \\
\vdots & \vdots \\
\frac{\partial y^{\ell}}{\partial x^{1}} \cdots \frac{\partial y^{\ell}}{\partial x^{m}}
\end{pmatrix}_{\sigma} = \begin{pmatrix}
\frac{\partial y^{1}}{\partial u^{1}} \cdots \frac{\partial y^{1}}{\partial u^{n}} \\
\vdots & \vdots \\
\frac{\partial y^{\ell}}{\partial u^{1}} \cdots \frac{\partial y^{\ell}}{\partial u^{n}}
\end{pmatrix}_{\sigma} \begin{pmatrix}
\frac{\partial u^{1}}{\partial x^{1}} \cdots \frac{\partial u^{1}}{\partial x^{m}} \\
\vdots & \vdots \\
\frac{\partial u^{n}}{\partial x^{1}} \cdots \frac{\partial u^{n}}{\partial x^{m}}
\end{pmatrix}_{\sigma}, \quad \frac{\partial y^{i}}{\partial x^{j}} = \sum_{k=1}^{n} \frac{\partial y^{i}}{\partial u^{k}} \frac{\partial u^{k}}{\partial x^{j}}.$$

Thm 2 (Inverse function). Let Ω be open in \mathbb{R}^m , $f: \Omega \to \mathbb{R}^m$ be C^1 , $\alpha \in \Omega$, $b = f(\alpha)$. If $\det f'(\alpha) \neq 0$, there are $U \in \mathcal{U}_{\alpha}$ and $V \in \mathcal{U}_{b}$, s.t. $f: U \to V$ is diffeomorphism. (illustrating the basic idea of differential calculus)

Rek 1. det $f'(\alpha) \neq 0$ means $f'(\alpha) : \mathbb{R}^m \to \mathbb{R}^m$ is a linear isomorphism; then f is locally invertible. **Cor 1** (Local surjection). Let Ω be open in \mathbb{R}^m , $f: \Omega \to \mathbb{R}^n$ be C^1 , $\alpha \in \Omega$. If

 $\operatorname{rank} f'(a) = n$, then $b \in [f(\Omega)]^{\circ}$ **Rek 2**. $\operatorname{rank} f'(a) = n$ means $f'(a) : \mathbb{R}^{m} \to \mathbb{R}^{n}$ is linear surjection; then f is

locally surjective.

Pf(Cor1).
$$f'(\alpha) = \begin{pmatrix} \partial_1 f^1 \cdots \partial_n f^1 \cdots \partial_m f^1 \\ \vdots & \vdots & \vdots \\ \partial_1 f^n \cdots \partial_n f^n \cdots \partial_m f^n \end{pmatrix}, \quad \det \begin{pmatrix} \partial_1 f^1 \cdots \partial_n f^1 \\ \vdots & \vdots \\ \partial_1 f^n \cdots \partial_n f^n \end{pmatrix} \neq 0.$$
Let $F: \Omega \to \mathbb{R}^m$, $F(x) = (f^1(x), \dots, f^n(x), x^{n+1}, \dots, x^m)$. then

 $F'(\alpha) = \begin{pmatrix} \begin{pmatrix} \partial_i f^j \end{pmatrix}_{i,j=1,\dots,n} & \begin{pmatrix} \partial_i f^j \end{pmatrix}_{i>n} \\ 0 & I_{m-n} \end{pmatrix}$

is invertible. We apply the Inverse Function Theorem to F.

2. Suejectivity of $f: \mathbb{R}^m \to \mathbb{R}^n$ and FTA

Thm 3 (FTA). Let $a_i \in \mathbb{C}$, $n \geq 1$,

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

- be a polynomial, then $\exists \xi \in \mathbb{C}$ s.t. $p(\xi) = 0$.
- * Gauss gave the first proof more than 300 years ago. Even in 21st century, new proofs keep emerging Sen (2000); Lazer & Leckband (2010).
- * Usual proofs use Complex Analysis or Algebraic Topology, many proofs are collected in Fine & Rosenberger (1997).
- * A proof via Green theorem can be found in the textbook Ouyang et al. (2003).
- * Lazer & Leckband (2010) applied Fourier inverse transform to prove FTA.
- * Sen (2000) applied Inverse Fun Thm, the proof need topological concepts such as open sets (and connectivity) in subspace of \mathbb{C} .
- * Our **motivation** was to avoid subspace topology.

Let
$$z = x + iy$$
, $p(z) = u(x, y) + iv(x, y)$. View p as a map $p : \mathbb{R}^2 \to \mathbb{R}^2$, $p(x, y) = (u(x, y), v(x, y))$.

From Cauchy-Riemann equation we know

$$p'(z) = 0 \iff \det p'(x, y) = 0, \quad (x, y) \text{ is critical point of } p : \mathbb{R}^2 \to \mathbb{R}^2$$

Since p'(z) is polynomial of order (n-1), the map $p: \mathbb{R}^2 \to \mathbb{R}^2$ has finitely many critical points. The fact

$$\lim_{|(x,y)|\to\infty}|p(x,y)|=+\infty,$$

brings our attention to a classical result (advanced calculus exercise):

Pro 1 ((Deimling, 1985, Page 24)). If the C^1 -map $f: \mathbb{R}^n \to \mathbb{R}^n$ is coercive:

$$\lim_{|x| \to \infty} |f(x)| = +\infty,\tag{3}$$

and $\det Df(x) \neq 0$ for $\forall x \in \mathbb{R}^n$, then $f(\mathbb{R}^n) = \mathbb{R}^n$.

Rek 3. (1) If we can weaken $\det Df(x) \neq 0$ for $\forall x \in \mathbb{R}^n$ to $\det Df(x) \neq 0$ except finitely many x, then FTA follows immediately.

(2) (3) means that $f(\mathbb{R}^n)$ is closed in \mathbb{R}^n . This motivates our Thm5.

Def 1. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be C^1 , $\alpha \in \mathbb{R}^m$. If $Df(\alpha): \mathbb{R}^m \to \mathbb{R}^n$ is not surjective (i.e., $\operatorname{rank} Df(\alpha) < n$), we call α a critical point of f.

Thm 4 (Local surjection). Let $\Omega \subset \mathbb{R}^m$, $f: \Omega \to \mathbb{R}^n$ be C^1 . If $a \in \Omega^\circ$ is not critical (i.e. rank Df(a) = n), then $f(a) \in [f(\Omega)]^\circ$.

Thm 5 (Liu & Liu (2018)). If the C^1 -map $f: \mathbb{R}^m \to \mathbb{R}^n$ has only finitely many critical points, $n \ge 2$, $f(\mathbb{R}^m)$ is closed in \mathbb{R}^n , then $f(\mathbb{R}^m) = \mathbb{R}^n$. (necessary condition)

Pf. Let K be the critical set of f, then f(K) is also finite.

- * $\mathbb{R}^m \setminus K$ is open in \mathbb{R}^m . By Thm 4, $\forall x \in \mathbb{R}^m \setminus K$, f(x) is interior to $A = f(\mathbb{R}^m \setminus K)$. hence A is open in \mathbb{R}^n .
- * By assumption,

$$A \cup f(K) = f(\mathbb{R}^m \setminus K) \cup f(K) = f(\mathbb{R}^m)$$
 is **closed**.

* Noting that $f(\mathbb{R}^m) = \overline{f(\mathbb{R}^m)} \supset \overline{A}$, it suffices to prove the intuitive result:

if the union of open set A and a finite set is closed, then $\overline{A} = \mathbb{R}^n$.

Lem 1. Let $n \ge 2$, A be nonempty open set in \mathbb{R}^n . If there are k points $p_i \in \mathbb{R}^n$ s.t. $A \cup \{p_i\}_{i=1}^k$ is closed, then $\overline{A} = \mathbb{R}^n$.

Pf. Since *A* is open, $A \cap \partial A = \emptyset$.

$$A \cup \{p_i\} = \overline{A \cup \{p_i\}}$$

$$= A \cup \partial A \cup \{p_i\}$$

$$\Longrightarrow \partial A \subset \{p_i\},$$

So ∂A is finite.

Cor 2. Assume M is m-dimensional smooth manifold without boundary, C^1 -map $f: M \to \mathbb{R}^n$ has only finitely many critical points, $n \ge 2$. If f(M) is closed in \mathbb{R}^n , then $f(M) = \mathbb{R}^n$.

Cor 3. Let $n \ge 2$, M be m-dimensional compact manifold without boundary. If $f: M \to \mathbb{R}^n$ is C^1 -map, then f has infinitely many critical points.

3. Changing variable for multiple integrals

Motivated by do Carmo (1976) (CVF for double integral via Green Theorem), we assume CVF for (m-1)-integrals, define **surface integral** in \mathbb{R}^m and prove the Divergence Theorem, then prove CVF for *m*-integrals.

Surface integral and Divergence Theorem

- * Let U be Jordan measurable closed domain in \mathbb{R}^{m-1} , a C^1 -parametrized surface is a C^1 -map $x:U\to\mathbb{R}^m$ satisfying rank $\left(\partial x^i/\partial u^i\right)=m-1$ and injective in U°.
- * x is equivalent with $\tilde{x}: \tilde{U} \to \mathbb{R}^m$ if there is diffism $\phi: \tilde{U} \to U$ s.t. $\tilde{x} = x \circ \phi$. Then $\tilde{x}(\tilde{U}) = x(U)$, we can identify the equivalent class [x] with x(U), called **smooth surface**, and denoted by S = x(U) or $S = [x : U \to \mathbb{R}^m]$.

Using Cramer we know that a **normal vector** of $S = [x : U \to \mathbb{R}^m]$ at x(u) is

$$N(u) = \left(\frac{\partial(x^2, \dots, x^m)}{\partial(u^1, \dots, u^{m-1})}, \dots, (-1)^{m+1} \frac{\partial(x^1, \dots, x^{m-1})}{\partial(u^1, \dots, u^{m-1})}\right).$$

The **surface integral** of cont $f: S \to \mathbb{R}$ on $S = [x: U \to \mathbb{R}^m]$ is defined by

$$\int_{S} f(x) d\sigma = \int_{U} f(x(u)) |N(u)| du.$$
 (4)

By (m-1)-dim CVF, the RHS is **indept** with the parametrization of *S*.

For piece-wise smooth surface $\Sigma = \bigcup_{i=1}^{\ell} S_i$, where $S_i = x_i(U_i)$ interiorly-disjoint, set

$$\int_{\Sigma} f d\sigma = \sum_{i=1}^{\ell} \int_{S_i} f d\sigma. \qquad x_i(U_i^{\circ}) \cap x_j(U_j^{\circ}) = \emptyset.$$

Thm 6 (Divergence Theorem). Let $D \subset \mathbb{R}^m$ be bounded closed domain, ∂D piece-wise smooth, $F \in C^1(D, \mathbb{R}^m)$, n is unit outer normal of ∂D , then

$$\int_{D} \operatorname{div} F \, \mathrm{d}x = \int_{\partial D} F \cdot n \, \mathrm{d}\sigma. \qquad \int_{D} \partial_{i} f \, \mathrm{d}x = \int_{\partial D} f n^{i} \, \mathrm{d}\sigma \quad \text{for } f \in C^{1}(D).$$

3.2. Simple domain

A bdd domain Ω is **simple**, if there is (m-1)-dim C^1 -parametrized surface $x:U\to\mathbb{R}^m$ s.t. $\partial\Omega=x(U)$. Note that U is closed, x is injective in U° .

Exm 1. Balls *B* in \mathbb{R}^m is simple. For m = 3, we take

$$x:[0,\pi]\times[0,2\pi]\to\mathbb{R}^3,\quad (\varphi,\theta)\mapsto(\sin\varphi\cos\theta,\sin\varphi\sin\theta,\cos\varphi)\,.$$

Thm 7 (Liu & Zhang (2017)). Let D and Ω be bdd open domain in \mathbb{R}^m with C^1 -boundary, Ω simple, the C^2 -map $\varphi: \overline{\Omega} \to \overline{D}$ maps $\partial \Omega$ onto ∂D diffeomly, $f \in C(\overline{D})$, then $\int_D f(y) \mathrm{d}y = \pm \int_{\Omega} f(\varphi(x)) J_{\varphi}(x) \mathrm{d}x, \quad \text{where } J_{\varphi}(x) = \det \varphi'(x).$

Rek 4. (1) Using mollifier, we may assume that f is the restriction to D of smooth fun on \mathbb{R}^m . Thus we can take $P \in C^1(\mathbb{R}^m)$ s.t. $\partial P/\partial y^1 = f$. (2) φ only good on bdry, this leads to Brouwer Fixed Point Theorem (Thm9). (3) See also Lax (1999, 2001); Taylor (2002); Ivanov (2005).

Let $x: U \to \mathbb{R}^m$ be parametrization of $\partial \Omega$, then $y = \varphi \circ x$ is parametrion of ∂D. $N = \left(\frac{\partial(y^2, \dots, y^m)}{\partial(u^1, \dots, u^{m-1})}, \dots, (-1)^{m+1} \frac{\partial(y^1, \dots, y^{m-1})}{\partial(u^1, \dots, u^{m-1})}\right)$

is normal vector of ∂D , $n = \pm N/|N| = (n^1, \dots, n^m)$ unit normal.

 $A = (A_1, \dots, A_m), \quad \tilde{N} = (\tilde{N}^1, \dots, \tilde{N}^m), \quad \text{where}$ Let

$$A_{i} = (-1)^{i+1} \frac{\partial(y^{2}, \dots, y^{m})}{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}, \qquad \tilde{N}^{i} = (-1)^{i+1} \frac{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}{\partial(u^{1}, \dots, u^{m-1})}.$$

then $\tilde{n} = \pm \tilde{N}/|\tilde{N}|$ is unit normal vec of $\partial \Omega$.

By Cauchy-Binet formula,

$$\pm n^{1}|N| = \frac{\partial(y^{2}, \dots, y^{m})}{\partial(u^{1}, \dots, u^{m-1})}$$

$$= \sum_{i=1}^{m} \frac{\partial(y^{2}, \dots, y^{m})}{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})} \frac{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}{\partial(u^{1}, \dots, u^{m-1})} = A \cdot \tilde{N}.$$

By Divergence Theorem,

ence Theorem,
$$P \circ y = P \circ (\varphi \circ x) = (P \circ \varphi) \circ x = \tilde{P} \circ x$$

$$\int_{D} f(y) dy = \int_{D} \frac{\partial P}{\partial y^{1}} dy = \int_{\partial D} P n^{1} d\sigma$$

$$= \pm \int_{U} P(y(u)) n^{1}(u) |N(u)| du \qquad \tilde{N} = \pm |\tilde{N}| \tilde{n}$$

$$= \pm \int_{U} \tilde{P}(x(u)) (A \cdot \tilde{N}) du = \pm \int_{U} (\tilde{P}A \cdot \tilde{n}) |\tilde{N}| du$$

$$= \pm \int_{\partial \Omega} \tilde{P}A \cdot \tilde{n} d\sigma = \pm \int_{\Omega} \operatorname{div}(\tilde{P}A) dx. \tag{5}$$

To compute $\operatorname{div}(\tilde{P}A)$, let $y_i^k = \partial y^k/\partial x^i$, then A_i is algebraic cofactor of y_i^1 in

$$J_{\varphi}(x) = \frac{\partial(y^{1}, \dots, y^{m})}{\partial(x^{1}, \dots, x^{m})} = \det \begin{pmatrix} y_{1}^{1} & y_{2}^{1} & \cdots & y_{i}^{1} & \cdots & y_{m}^{1} \\ y_{1}^{2} & y_{2}^{2} & \cdots & y_{i}^{2} & \cdots & y_{m}^{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{1}^{m} & y_{2}^{m} & \cdots & y_{i}^{m} & \cdots & y_{m}^{m} \end{pmatrix}.$$

By Hadamard identity we get div A = 0, so

$$\sum_{i=1}^{m} y_{i}^{j} A_{i} = \delta_{1}^{j} \frac{\partial (y^{1}, \dots, y^{m})}{\partial (x^{1}, \dots, x^{m})} = \delta_{1}^{j} J_{\varphi}(x), \qquad \tilde{P}(x) = P(\varphi(x))$$

$$\operatorname{div}(\tilde{P}A) = \nabla \tilde{P} \cdot A + \tilde{P} \operatorname{div} A = \nabla \tilde{P} \cdot A = \sum_{i=1}^{m} \frac{\partial \tilde{P}}{\partial x^{i}} A_{i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \frac{\partial P}{\partial y^{j}} \frac{\partial y^{j}}{\partial x^{i}} \right) A_{i}$$

$$= \sum_{i=1}^{m} \frac{\partial P}{\partial y^{j}} \left(\sum_{i=1}^{m} y_{i}^{j} A_{i} \right) = (\partial_{y^{1}} P) J_{\varphi}(x) = f(\varphi(x)) J_{\varphi}(x).$$

From (5) we get

$$\int_{\Omega} f(y) dy = \pm \int_{\Omega} f(\varphi(x)) J_{\varphi}(x) dx.$$

Cor 4. Under assumptions of Thm 7, if I_{ω} does not change sign on $\overline{\Omega}$, then

$$\int_{D} f(y) dy = \int_{D} f(\varphi(x)) |J_{\varphi}(x)| dx.$$

3.3. General domain

Thm 8. Let D and Ω be Jordan measurable bounded open domains in \mathbb{R}^m , $f \in C(\overline{D})$, $\varphi \in C^1(\overline{\Omega}, \mathbb{R}^m)$, $\varphi : \Omega \to D$ is diffeomorphism, then

$$\int_{D} f(y) dy = \int_{\Omega} f(\varphi(x)) |J_{\varphi}(x)| dx.$$

Pf. Since $f = f_+ - f_-$, $f_{\pm} = \frac{1}{2}(|f| \pm f) \in C(\overline{D})$, we may assume $f \ge 0$. Set $\tilde{f}(x) = f(\varphi(x))|f_{\varphi}(x)|$.

(1) $\forall \varepsilon > 0$, choose disjoint balls $B_i \subset \Omega$ s.t.

$$\int_{\Omega} \tilde{f}(x) dx - \varepsilon \le \sum_{i} \int_{B_{i}} \tilde{f}(x) dx = \sum_{i} \int_{\varphi(B_{i})} f(y) dy \le \int_{D} f(y) dy.$$

- (2) Letting $\varepsilon \to 0$ we get $\int_{\Omega} \tilde{f}(x) dx \le \int_{\Omega} f(y) dy$.
- (3) Similarly, $\int_{\Omega} f(y) dy \le \int_{\Omega} \tilde{f}(x) dx$.

4. Brouwer fixed point theorem (BFPT)

Thm 9 (Brouwer). Let *B* be the unit closed ball in \mathbb{R}^m , $g: B \to B$ be continuous. Then *g* has a fixed point.

It is well known that to prove Thm9 it suffices to prove

Pro 2. There does not exist $\varphi \in C^2(B, \mathbb{R}^m)$ s.t. $\varphi(B) \subset \partial B$ and $\varphi|_{\partial B} = 1_{\partial B}$.

Pf(Motivated by Báez-Duarte (1993)). Take

$$f(y) = \begin{cases} \sqrt{1 - 4|y|^2}, & |y| \le \frac{1}{2}, \\ 0, & \frac{1}{2} < |y| \le 1. \end{cases}$$

Then $f(\varphi(x)) = 0$ for $x \in B$.

View $\varphi: x \mapsto y$ as transformation, Thm 7 yields

$$0 < \int_{B} f(y) dy$$

$$= \pm \int_{B} f(\varphi(x)) \det \left(\frac{\partial y}{\partial x}\right) dx = 0, \text{ a contradiction.}$$

- **Rek 5**. * Most people learn the proof of BFPT for the first time as application of homology theory in Algebraic Topology.
 - * Proved as application of Stokes formula on Differentiable manifolds.
 - * Elementary proofs can also be found in Milnor (1978); Rogers (1980); Kannai (1981).

Rek 6. Advantages of our proof of Changing variable formula:

- (1) It is just clever computation (Cauchy-Binet, etc), more easy to follow.
- (2) Theory of surface integral (including Divergence Theorem) is developed during the proof.
- (3) As by product we get Brouwer fixed point theorem.

Exm 2 (Application of BFPT). Let A be invertible, $f : \mathbb{R}^n \to \mathbb{R}^n$ verify

$$\lim_{|x|\to\infty} \frac{|f(x)|}{|x|} = 0, \qquad \qquad \lim_{\substack{x \to \infty \\ |x|\to\infty}} \frac{f(x)}{|x|} = 0.$$

Then the nonlinear equation Ax = f(x) is solvable (Ax = b), Cramer rule).

5. Coarea formula and applications

Influenced by Mei (2020), I present coarea formula.

Thm 10. Let $G \subset \mathbb{R}^m$ be bdd open, $f \in C^2(G)$, $\nabla f(x) \neq 0$ for $\forall x \in G$. $\Omega = f^{-1}[a, b] \subset G$.

If
$$g \in C(\Omega)$$
, then $\int_{\Omega} g = \int_{a}^{b} dt \int_{f^{-1}(t)} \frac{g}{|\nabla f|} d\sigma$.

Pf(Motivated by (Wu et al., 1989, §11)). For $p \in f^{-1}(a)$, let $x(\cdot, p)$ be solution of

$$x' = \frac{\nabla f(x)}{|\nabla f(x)|^2}, \quad x(a) = p.$$

Then $x(b, p) \in f^{-1}(b)$. (ODE Let $\varphi: U \to \mathbb{R}^m$ be par of $f^{-1}(\alpha)$, then the C^1 -map

(ODE is applied in Calculus)

 $T: U \times [a,b] \to \mathbb{R}^m$

$$T(u,t) = x(t-a,\varphi(u))$$

is interiorly injective,

 $T(\cdot,t):U\to\mathbb{R}^m$ is par of $f^{-1}(t)$, with normal $N_t(u)$.

(6)

Expanding $\det T'(u,t)$ and using (6) yield

$$\left|\det T'(u,t)\right| = \frac{|N_t(u)|}{|\nabla f(T(u,t))|} \neq 0.$$

So T is diffeomorphism on $U^{\circ} \times (a, b)$. By changing variable and Fubini

$$\int_{\Omega} g(x) dx = \int_{T(U \times (a,b))} g(x) dx \qquad x = T(u,t)$$

$$= \int_{U \times (a,b)} g(T(u,t)) \left| \det T'(u,t) \right| du dt$$

$$= \int_{a}^{b} dt \int_{U} \frac{g(T(u,t))}{|\nabla f(T(u,t))|} |N_{t}(u)| du$$

$$= \int_{a}^{b} dt \int_{f^{-1}(t)} \frac{g}{|\nabla f|} d\sigma.$$

Exm 3. Let $g \in C^1(B_R \times [0, R])$, then for $r \in (0, R)$,

$$\frac{d}{dr} \int_{B_r} g(x,r) dx = \int_{B_r} \frac{\partial}{\partial r} g(x,r) dx + \int_{\partial B_r} g(x,r) d\sigma.$$

Pf. By coarea formula,

$$\int_{B_r} g(x,r) dx = \int_0^r dt \int_{|x|=t} g(x,r) d\sigma.$$

Applying

$$\frac{d}{dr} \int_0^r F(r,t) dt = F(r,r) + \int_0^r \partial_r F(r,t) dt$$

to

$$F(r,t) = \int_{|x|=t} g(x,r) d\sigma,$$

we deduce

$$\frac{d}{dr} \int_{B_r} g(x,r) dx = \int_{|x|=r} g(x,r) d\sigma + \int_0^r dt \int_{|x|=t} \partial_r g(x,r) d\sigma$$
$$= \int_{\partial B_r} g(x,r) d\sigma + \int_{B_r} \partial_r g(x,r) dx.$$

Exm 4. Let B be unit ball in \mathbb{R}^m , $f \in C^1(B)$, $f|_{\partial B} = 0$. Find

$$I = \lim_{\varepsilon \to 0^+} \int_{B \setminus B_{\varepsilon}} \frac{x \cdot \nabla f(x)}{|x|^m} dx, \quad \text{where } B_{\varepsilon} : |x| \le \varepsilon.$$

Pf. By defin of surface integrals (4), $\int_{|y|=t} g(x) d\sigma = t^{m-1} \int_{|y|=1} g(ty) d\sigma.$

$$\begin{split} &\int_{B\setminus B_{\varepsilon}} \frac{x \cdot \nabla f(x)}{|x|^{m}} \mathrm{d}x = \int_{\varepsilon}^{1} \mathrm{d}t \int_{|x|=t} \frac{x \cdot \nabla f(x)}{|x|^{m}} \mathrm{d}\sigma \\ &= \int_{\varepsilon}^{1} \left(t^{m-1} \int_{|y|=1} \frac{(ty) \cdot \nabla f(ty)}{|ty|^{m}} \mathrm{d}\sigma \right) \mathrm{d}t \\ &= \int_{\varepsilon}^{1} \mathrm{d}t \int_{|y|=1} \nabla f(ty) \cdot y \, \mathrm{d}\sigma = \int_{|y|=1} \mathrm{d}\sigma \int_{\varepsilon}^{1} \frac{d}{dt} f(ty) \, \mathrm{d}t \\ &= \int_{|y|=1} \left[-f(\varepsilon y) \right] \, \mathrm{d}\sigma \to -f(0) \omega_{m}. \end{split}$$

Rek 7. This can also be solved using divergence theorem.

Pf of L-multipliers,
$$F(x) = (f(x), g^{1}(x), \dots, g^{n}(x)). \text{ By Thm 4}$$

$$\min\{f: \mathbb{R}^{m} \to \mathbb{R}\} \qquad F: U \to \mathbb{R}^{n+1}$$

$$g^{1}(x) = 0$$

$$\vdots$$

$$g^{n}(x) = 0$$

$$rank F'(x_{0}) = rank \begin{pmatrix} \nabla f(x_{0}) \\ \nabla g^{1}(x_{0}) \\ \vdots \\ \nabla g^{n}(x_{0}) \end{pmatrix} = n,$$

thus $\nabla f(x_0) \in \operatorname{span} \left\{ \nabla g^1(x_0), \dots, \nabla g^n(x_0) \right\}.$

Coarea and method of element

Let
$$G \subset \mathbb{R}^m$$
, $f: G \to \mathbb{R}$. $\Omega = f^{-1}[a, b]$, $g: \Omega \to \mathbb{R}$.

Take surface element $d\sigma$ at $x \in f^{-1}(t)$. Let y be the intersection of $f^{-1}(t+dt)$ and normal line of $f^{-1}(t)$ at x. Then

$$dt = f(y) - f(x) \approx \nabla f(x) \cdot (y - x),$$

$$dt = \int_{-\infty}^{\infty} dt$$

$$|y - x| = \frac{\mathrm{d}t}{|\nabla f(x)|}.$$

Volume of the gray column with base d σ and high |v - x| is

$$dV = \frac{dtd\sigma}{|\nabla f(x)|}, \quad dm = \frac{g(x)}{|\nabla f(x)|}dtd\sigma. \quad \int_{f=t} dm = \text{mass of } f^{-1}[t, t + dt]$$

Hence mass of Ω is

$$\int_{\Omega} g(x) dx = \int_{a}^{b} dt \int_{f=t} \frac{g(x)}{|\nabla f(x)|} d\sigma.$$

Exm 5. Let $g \in C^1(B_R \times [0, R])$, then for $r \in (0, R)$,

$$\frac{d}{dr} \int_{B_r} g(x,r) dx = \int_{B_r} \frac{\partial}{\partial r} g(x,r) dx + \int_{\partial B_r} g(x,r) d\sigma.$$

Pf. By coarea formula,

$$\int_{B_r} g(x,r) dx = \int_0^r dt \int_{|x|=t} g(x,r) d\sigma.$$

Applying

$$\frac{d}{dr} \int_0^r F(r,t) dt = F(r,r) + \int_0^r \partial_r F(r,t) dt$$

to

$$F(r,t) = \int_{|x|=t} g(x,r) d\sigma,$$

we deduce

$$\frac{d}{dr} \int_{B_r} g(x,r) dx = \int_{|x|=r} g(x,r) d\sigma + \int_0^r dt \int_{|x|=t} \partial_r g(x,r) d\sigma$$
$$= \int_{\partial B_r} g(x,r) d\sigma + \int_{B_r} \partial_r g(x,r) dx.$$

Chain rule and Cauchy-Binet

Chain rule and Cauchy-Binet
$$\begin{pmatrix}
\frac{\partial y^2}{\partial u^1} & \cdots & \frac{\partial y^2}{\partial u^{m-1}} \\
\vdots & & \vdots \\
\frac{\partial y^m}{\partial u^1} & \cdots & \frac{\partial y^m}{\partial u^{m-1}}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial y^2}{\partial x^1} & \cdots & \frac{\partial y^2}{\partial x^i} & \cdots & \frac{\partial y^2}{\partial x^m} \\
\vdots & & \vdots & & \vdots \\
\frac{\partial y^m}{\partial x^1} & \cdots & \frac{\partial y^m}{\partial x^i} & \cdots & \frac{\partial y^m}{\partial x^m}
\end{pmatrix} \begin{pmatrix}
\frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^1}{\partial u^{m-1}} \\
\vdots & & \vdots & \vdots \\
\frac{\partial x^i}{\partial u^1} & \cdots & \frac{\partial x^i}{\partial u^{m-1}}
\end{pmatrix}$$

$$\frac{\partial(y^2,\ldots,y^m)}{\partial(u^1,\ldots,u^{m-1})} = \sum_{i=1}^m \frac{\partial(y^2,\ldots,y^m)}{\partial(x^1,\ldots,\hat{x}^i,\ldots x^m)} \frac{\partial(x^1,\ldots,\hat{x}^i,\ldots x^m)}{\partial(u^1,\ldots,u^{m-1})}$$

 $(m-1)\times(m-1)$ $(m-1)\times m$ $m\times(m-1)$

References

941-943.

Sen A (2000). Notes: Fundamental Theorem of Algebra – Yet Another Proof. Amer. Math. Monthly, 107(9) 842–843.

Lazer AC, Leckband M (2010). The fundamental theorem of algebra via the Fourier inversion formula. Amer. Math. Monthly, 117(5) 455–457.

Fine B, Rosenberger G (1997). The fundamental theorem of algebra. Under-

graduate Texts in Mathematics. Springer-Verlag, New York.

Ouyang G, Yao Y, Zhou Y (2003). Mathematical Analysis. Fudan Univ. Press.

Deimling K (1985). Nonlinear functional analysis. Springer-Verlag, Berlin. Liu P, Liu S (2018). On the surjectivity of smooth maps into Euclidean spaces and the fundamental theorem of algebra. Amer. Math. Monthly, 125(10)

do Carmo MP (1976). Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. Translated from the Portuguese. Liu S, Zhang Y (2017). On the change of variables formula for multiple integrals. J. Math. Study, 50(3) 268–276.Lax PD (1999). Change of variables in multiple integrals. Amer. Math.

Monthly, 106(6) 497-501.

Lax PD (2001). Change of variables in multiple integrals. II. Amer. Math. Monthly, 108(2) 115–119.Taylor M (2002). Differential forms and the change of variable formula for

multiple integrals. J. Math. Anal. Appl., 268(1) 378–383.

Ivanov NV (2005). A differential forms perspective on the Lax proof of the

Ivanov NV (2005). A differential forms perspective on the Lax proof of the change of variables formula. Amer. Math. Monthly, 112(9) 799–806.Báez-Duarte L (1993). Brouwer's fixed-point theorem and a generalization

of the formula for change of variables in multiple integrals. J. Math. Anal.

Appl., 177(2) 412–414.

Milnor J (1978). Analytic proofs of the "hairy ball theorem" and the Brouwer fixed-point theorem. Amer. Math. Monthly, 85(7) 521–524.

Rogers CA (1980). A less strange version of Milnor's proof of Brouwer's fixed-point theorem. Amer. Math. Monthly, 87(7) 525–527.

Kannai Y (1981). An elementary proof of the no-retraction theorem. Amer. Math. Monthly, 88(4) 264-268.

Mei I (2020). Mathematical Analysis. Mathematical Analysis.

Wu H, Shen C, Yu Y (1989). Riemannian Geometry. Peking Univ. Press.

Thank you!

http://lausb.github.io